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The force densities exerted on a localized material system by linearized interaction
with fields of axionic and dilatonic type are shown to be describable very generally
by relatively simple expressions that are well behaved for fields of purely external
origin, but that will be subject to ultraviolet divergences requiring regularization
for fields arising from self-interaction in submanifold-sup ported ª braneº -type
systems. In the particular case of a two-dimensiona lly supported, i.e., string-type,
system in an ordinary four-dimension al background it is shown how the result
of this regularization is expressible in terms of the worldsheet curvature vector
K m , and more particularly that (contrary to what was suggested by early work
on this subject) for a string of Nambu ±Goto type the divergent contribution
from the dilatonic self-action will always be directed oppositely to its axionic
counterpart. This makes it possible for the dilatonic and axionic divergences
entirely to cancel each other out (so that there is no need of a renormalization
to get rid of ª infinitiesº ) when the relevant coupling coefficents are related by
the appropriate proportionality condition provided by the low-energy limit of
superstring theory.

1. INTRODUCTION

This article is intended as a contribution to the clarification of a question

raised by Dabholkar and Harvey (1989), who pointed out that the finiteness

of superstring theory implied a similar finiteness for the corresponding low-

energy classical limit theory, as constructed in terms of Nambu±Goto-type
strings interacting via coupling to gravitational, dilatonic, and axionic type

fields. What this means is that although the gravitational, dilatonic, and

axionic self-interaction contributions will each be separately divergent in

generic classical string models, their net effect should cancel outÐ so that

no ª infiniteº renormalization is requiredÐ in the special case of the particular
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model obtained from the low-energy limit of superstring theory. Although

there has always been a general consensus to the effect that this noteworthy

prediction is indeed correct, the question of how the expected cancellation
actually comes about has been the subject of considerable discord.

Relying on the straightforwardÐ but with hindsight obviously flawedÐ
analysis of Dabholkar and Harvey, the opinion that was most widely held

until recently is succinctly summarized by the assertion (Dabholkar et al.,
199 0) that, ª Since the quantum answer is zero the classical answer must be

zero. This is indeed true. There are three divergent contributions to the
classical self energy. The dilaton contribution is the same as the axion but

the gravitational contribution is negative and twice as large.º The flaw in in

the last sentence of this particular analysis is that it takes account only of

the external field energy contributions, while neglecting the internal (world

sheet supported) contributions, either because the authors assumed (wrongly)

that they would be relatively negligible, or else because they simply forgot
about them, perhaps due to having started by working out the axion part, for

which the previous literature was already well developped (Vilenkin and

Vachaspati, 1987) and for which it just so happens that there is no internal

contribution.

There was also a noteworthy dissenting opinion: while agreeing that
that total was indeed zero, it was claimed on the basis of a rather obscure

calculation by Copeland et al. (199 0) thatÐ far from being the same as that

of the axionÐ the dilaton contribution canceled out all by itself, leaving the

axion contribution to be canceled just by the gravitational contribution. It

appears with hindsight that this nonconformist conclusion was not quite so

wide of the mark as that of Dabholkar and Harvey, but it does not seem to
have been taken so seriously, presumably because of the failure to make clear

the logical reasoning on which it was supposed to have been based.

It has now become evident that both of these competing alternatives

were incorrect, essentially for the same underlying reason, which was the

use of naive force or energy formulas based on the omission of various

important terms that were wrongly assumed to be negligible or simply forgot-
ten about. These overhasty omissions were originally motivated to a large

extent by the technical difficulties involved in actually evaluating the terms

in question, but such difficulties have recently been alleviated by the introduc-

tion of more efficient geometrical methods. Following the derivation by

these methods of the correct formula for the complete gravitational force

contribution (Battye and Carter, 1995) acting on a general string model, it
has recently been found (Carter and Battye, 1998) that the divergent part of

the gravitational self-force cancels itself out all by itself in the case of a

Nambu±Goto string in four dimensions. The implication of this is thatÐ in

order for the total to vanish in the low-energy classical limit derived from
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superstring theoryÐ the corresponding dilaton contribution should neither be

equal to the axion contribution (as asserted by Dabholkar and Harvey) nor

even zero (as asserted by Copeland et al.,), but in fact exactly opposite to
the axion contribution, at least in a four-dimensional background.

The purpose of the present work is to provide a direct verification of

this corollary, i.e., of the mutual cancellation of the relevant axionic and

dilatonic string self-action divergences for the linearized classical limit

derived from superstring theory in four dimensions. A less direct confirmation,

and a generalization to higher dimensions (where the total still vanishes, but
not the gravitational part on its own) has already been provided using a new

approach based on the use of an effective action by Buonanno and Damour

(1998). It is worthwhile to provide further confirmation because the pertinence

of this kind of approach was explicitly, but unjustly, cast into doubt by

Copeland et al. (199 0), who alleged that ª in general it is not correctº to

deduce the divergent part of the self-force from the divergent part of the
effective action, the reason for their scepticism being the discrepancies that

arose in their own rather incoherent approach.

The verdict of the present analysis is that use of the effective action

approach is inherently correct after all, and that there are no discrepancies,

provided all the calculations are carried out properly without omission of
relevant terms. That an approach based on a force analysis is perfectly

consistent with an approach using an effective action had previously been

demonstrated for electromagnetic interactions in strings (Carter, 1997b).

Moreover, the the results of the effective action approach used by Buonanno

and Damour (1998) were known from the outset to be consistent with the

detailed force analysisÐ as correctly carried out with all relevant terms
includedÐ for purely gravitational interactions (Battye and Carter, 1995). In

this gravitational case the detailed relationship between the two kinds of

approach has since been demonstrated explicitly (Carter, 1999). The present

work provides an analogously explicit demonstration that the effective action

approach used by Buonanno and Damour (1989) is consistent with the detailed

force analysis for the technically simpler cases of dilatonic and axionic
interactions.

2. LAGRANGIAN FOR DILATONIC AND AXIAL CURRENT
COUPLINGS

Before considering the divergences that arise from self-interaction it is
first necessary to consider the effect of linear interactions with generic fields

of the kinds with which we are concerned, namely a dilatonic (scalar) field

f and an axionic (pseudoscalar type) field represented by an antisymmetric

Kalb±Ramond type 2-form B m n , say. We shall ultimately be concerned with
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the application to the classical low-energy limit of superstring theory, which

also involves a symmetric gravitational perturbation field h m n . However, due

to the assumption of linearity (which will be physically justified when the
fields are sufficiently weak) each of the three pertinent (dilatonic, axionic,

and gravitational) parts can be treated independently of the other two. Since

the relevant analysis of the gravitational part is already available (Battye and

Carter, 1995; Carter and Battye, 1998; Carter, 1999) the present article will

be restricted to the corresponding analysis for the technically simple axionic

and dilatonic parts. Unlike the dilatonic part, the axionic part seems to have
been correctly treated in the earlier work (Dabholkar and Harvey, 1989;

Copeland et al., 199 0), but we shall work through it again here in order to

demonstrate the use of the neater, more efficient, and therefore less error-

prone mathematical formalism that has since been developed (Carter, 1996,

1997a) and that is indispensible for avoiding unnecessarily heavy algebra in

more complicated applications such as the gravitational part, and is helpful
even for relatively simple applications such as to the dilatonic part dealt

with here.

The action governing the kind of system to be analyzed here will consist

of a total (to 5 (ra 1 (ma in which the first term is a a free radiation

contribution of the form

(ra 5 # +Ãra |g|1/2 d 4x (1)

where |g| is the modulus of the determinant of the 4-dimensional spacetime

background metric g m n as expressed with respect to local coordinates x m , and

where +Ãra is a Lagrangian density scalar that depends onlyÐ in a homoge-

neous quadratic mannerÐ on the relevant linearized long-range field vari-

ables, which in the present instance are f and B m n . The other part of the
action is a material contribution

(ma 5 # +Ãma |g|1/2 d 4x (2)

involving another Lagrangian contribution +Ãma that is restricted to have a

purely linear dependence on these long-range field variables, while also

having a generically nonlinear dependence on whatever other variables may

be needed to characterize the localized material system under consideration,
which in the application that follows will be taken to be a string. It will be

postulated that the material system is unpolarized in the technical sense that

its dependence on the linearized long-range field variables does not involve

derivatives, which means that its Lagrangian density scalar will have the form
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+Ãma 5 +Ã1 +Ãco (3)

in which the primary contribution +Ãis entirely independent of the linearized

long-range field variables f and B m n , while the coupling term +Ãco will have

the homogeneous form

+Ãco 5
1

2
WÃm n B m n 1 TÃf (4)

in which the antisymmetric tensor field WÃm n and the scalar field TÃare each

independent of both B m n and f .

Unlike the linear coupling term, the homogeneously quadratic free radia-

tion contribution +ra will involve field gradients. This contribution will be
given in terms of covariant differentiation with respect to the background

metric g m n , for which the usual symbol ¹ will be used, by an expression of

the form

+ra 5 2
1

8 p 1 m2
D f ; m f ; m 1

1

6m2
J

J m n r J m n r 2 (5)

using the notation

f ; m 5 ¹ m f , J m n r 5 3 ¹ [m B n r ] (6)

where square brackets indicate index antisymmetrization. The parameters mD

and mJ in this expression are fixed coupling constants having the dimensions

of mass on the understanding that we are using units in which the speed of

light c and the Dirac±Planck constant " are set to unity. The quantity mD is
what may conveniently be referred to as the Dicke mass. This dilation mass

scale should not be confused with the dilaton mass, m f say, which is usually

assumed to be very small, and which is simply taken to be zero in the present

work. The Dicke dilation mass scale mD is usually supposed to be very large,

at least comparable with the Planck mass defined by mP 5 G 2 1/2, where G
is Newton’ s constant. In particular, if the theory is to be applied to the modern
solar system, then there are severe observational limits (Dicke, 1964) that

can be interpreted as implying that the relevant value of the dimensionless

Brans±Dicke parameter v 5 2Gm2
D 1 3/2 should be very large compared

with unity and hence that mD is large compared with mP.

The other mass scale, mJ, is what may conveniently be referred to as

the Joukowski mass, since the corresponding Kalb±Ramond couplingÐ of
the axial kind associated in the context of superstring theory with the names

of Wess and ZuminoÐ gives rise to a lift force of the type that has long been

well known in the context of aerofoil theory, where it was originally derived

as a corollary of the Magnus effect by the Russian theoretician Joukowski.
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This mass scale can also usually be supposed to be very large, unlike the

associated axion mass, ma say, with which it should not be confused. Like

the dilaton mass m f , the axion mass ma is usually assumed to be very small,
and will be taken to be zero for the purposes of the present work. The axial

current model obtained in this way is interpretable as the ª stiffº (Zel’ dovich

type) limit (characterized by sound perturbation propagation at the speed of

light) within the more general category of ordinary perfect fluid models.

The Kalb±Ramond Wess±Zumino Joukowski coupling bivector field WÃm n is

interpretable (Carter, 1994) as a vorticity flux, and must be such as to satisfy
a flux conservation law of the form

¹ m WÃm n 5 0 (7)

in order to ensure invariance under local Kalb±Ramond gauge transformations

of the form B m n j B m n 1 2 ¹ [m w n ] for an arbitrary covector field w n . In typical
applications to continuous media (Carter, 1994) this condition is fullfilled

by by a specification of the form WÃm n 5 e m n r s x 1
; r x 2

; s , where the scalars x +

and x 2 are two of the intrinsic field variables characterizing the material

system and e m n r s is the usual antisymmetric measure tensor induced on the

background space (modulo a choice of signature) by the metric g m n . In such

a case, as in the case of the string-type systems for which the relevant formula
for WÃm n will be described below, the corresponding coupling action has the

special featureÐ which it shares with its electromagnetic analogue (Carter,

1997b) Ð that its dependence on the metric g m n cancels out. Failure to make

proper allowance for the absence of this familiar simplifying property in

more general couplings, and in particular in couplings of gravitational and

gravitational type, seems to be one of the main reasons why early evaluations
of the latter (Dabholkar and Harvey, 1989: Copeland et al., 199 0) were so

systematically erroneous.

The conditions on the other coupling term are more restrictive. In princi-

ple the scalar source coefficient TÃmight have various forms for diverse scalar

coupling theories that might be conceived, but in order for the coupling to
be describable as ª dilatonicº in the sense associated most particularly with

the work of Dicke (1964), it must be given by the trace

TÃ5 TÃm
m (8)

of the material stress-energy tensor that is obtained from the primary Lagran-

gian contribution + of the system according to the usual geometric

specification

TÃm n 5 2|g| 2 1/2 - (+Ã|g|1/2)

- g m n
5 2

- +Ã

- g m n
1 +Ãg m n (9)

The reasoning whereby Dicke and other early workers (notably his
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predecessor Jordan and his colleague Brans) were lead to a coupling of this

kind was based on the postulate that in a fully nonlinear treatment the primary

material action contribution would be given by expression of the form (D 5
* +D |gD|1/2 d 4 x, in which the Lagrangian density +ÃD depends on whatever

intrinsic material constituent fields may be necessary as well as on a certain

background metric gD m v , say, that may conveniently be referred to as the

Dicke metric, in order to distinguish it from the associated Einsten metric,

gE m n say. The latter is characterized by the condition that the relevant gravita-

tional field action be proportional to the spacetime volume integral of its
Ricci tensor. In a fully nonlinear treatment the Dicke metric is related to the

Einstein metric by a conformal transformation of the form gD m n 5 e2 f gE m n .

In a linearized treatment such as is used here, the relevant Einstein metric

can be taken to have the form gE m n . g m n 1 h m n where the ª unperturbedº

background metric g m n is strictly flat or at least Ricci flat, and where h m n is

the usual gravitational perturbation tensor. The linearization implies that one
can also take e2 f . 1 1 2 f and hence that the relevant Dicke metric can

be taken to be given in terms of the flat or Ricci flat background by a relation

of the form gD m n . g m n 1 h m n 1 2 f g m n .

In the traditional kind of dilaton coupling theory theoryÐ as envisaged

by Dicke (1964)Ð and also in the particular kind of low-energy classical
limit of superstring theory that was considered by Dabholkar and Harvey

(1989), the f dependence only comes in indirectly via the dependence on

gD m n . [Rather more complicated couplings occur in some of the more eleborate

models derived from superstring theory or M-theory, but, as remarked by

Cho and Keum (1998), this does not necessarily affect the form of their

linearized weak-field limits.] Under such conditions it follows that in the
linearized limit we shall simply have +D|gD|1/2 . (+Ã 1 1/2 TÃm n (h m n 1
2 f g m n ))|g|1/2, where +Ãis obtained by substituting the unperturbed background

metric g m n in place of the Dicke metric gD m n in +D and TÃm n is the associated

stress-energy tensor as given by the usual formula (9). The consequences of

the purely gravitational part of the coupling that arises in this way have

already been treated elsewhere (Battye and Carter, 1995; Carter and Battye,
1998; Carter, 1998). The present work will be concerned just with the dilatonic

part, which will evidently be specified by a coupling term that reduces to

the simple form TÃf as presented in (4) with TÃas given by (8) and (9).

Not much can be said about the equations of motion for the internal fields

characterizing the material system until the form of its primary Lagrangian

contribution +Ã has been specified, but it is evident quite generally that
independently of such details, in an empty background the equation of motion

for the axion field will be obtainable, using the gauge condition

¹ m B m n 5 0 (1 0)
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(the analogue of the Lorentz condition familiar in the context of electromagne-

tism) in the well-known (Vachaspati and Vilenkin, 1987) D’ Alembertian form

¹ s ¹ s B m n 5 2 4 p m2
JWÃ

m n (11)

For the dilaton field no question of gauge arises at this stage: the relevant
field equation is thus immediately obtainable in the simple form

¹ s ¹ s f 5 2 4 p m 2 2
D TÃ (12)

3. DISTRIBUTIONAL SOURCES

As in the more familiar case of point-particle models, or ª zero-branes,º

the problem of ultraviolet divergences will arise for higher dimensional ª p-

branes,º and in particular for string models, with p 5 1, because in these
cases the relevant source densities WÃm n and TÃm n are not regular functions,

but Dirac-type distributions that vanish outside the relevant one- or two-

dimensional worldsheets, except of course in the case of an ordinary medium,

with the maximal space dimension, namely p 5 3, in an ordinary 4-dimen-

sional spacetime background of the kind to which the present analysis is
restricted.

In the case of a general p-brane, with local ( p 1 1)-dimensional

worldsheet embedding given by x m 5 xÅ m { s } in terms of intrinsic coordinates

s i (i 5 0, 1,. . . , p), so that the induced surface metric will have the form

g ij 5 g m n x
m
, i x

n
, j (13)

the relevant source distributions will be expressible using the terminology

of Dirac delta ª functionsº in the form exemplified in the case of the vorticity
flux by

WÃm n 5 |g| 2 1/2 # W m n d 4 [x 2 x{ s } ]| g |1/2 d p 1 1 s (14)

where | g | is the determinant of the induced metric (13), and where the surface

vorticity flux bivector W m n is a regular antisymmetric tensor field on the

worldsheet (but undefined off it). The analogous expression for the stress-
momentum-energy source will be given by

TÃm n 5 |g| 2 1/2 # T m n d 4 [x 2 x{ s } ]| g |1/2 d p 1 1 s (15)

where the surface stress-momentum-energy density T m n is a regular symmet-

ric tensor field on the worldsheet (but undefined off it).
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The distributional nature of these source terms, in cases for which p ,
3, is a corollary of the similarly distributional nature of the action density +Ãma

as defined, according to (3), to include both the purely internal contribution +Ã

and the cross-coupling contribution +Ãco. This distributional action density is

expressible in the form

+Ãma |g| 2 1/2 # +ma d 4 [x 2 x{ s } ]| g |1/2 d p 1 1 s (16)

with

+ma 5 + 1 +co (17)

where the primary contribution or ª master functionº + and the secondary

coupling contribution +co are both well-behaved scalar functions on the string

worldsheet, but undefined off it. Of these, the master function + will be the

intrinsic worldsheet Lagrangian, defined as a function just of the relevant

internal, worldsheet-confined, fields, such as currents, on the string and of
its induced metric, while the cross-coupling contribution will be given in

terms of the worldsheet-confined fields W m n and T m n by

+co 5 1±2 W m n B m n 1 T f (18)

where T 5 T m
m .

In terms of these well-behaved worldsheet functions, the corresponding

material contribution (2) to the action can be expressed directly, without

recourse to heavy distributional machinery, as a simple ( p 1 1)-surface

integral in the form

(ma 5 # +ma| g |1/2 d p 1 1 s (19)

In particular, the regular surface stress-energy tensor T m n needed for the

purpose of applying (18) is obtainable directly from the worldsheet master

function, without the use of distributions, using the formula

T m n 5 2| g | 2 1/2 - (+| g |1/2)

- g m n
(2 0)

As was remarked above, the errors in the early literature on this subject

(Dabholkar and Harvey, 1989; Copeland et al., 1990) were largely attributable

to failure to take proper account of the fact that unlike what occurs in the
historically familiar special cases of electromagnetic and axionic coupling,

for more general cases such as those of gravitational and dilatonic coupling

the relevant coupling action contribution will be metric dependent. In order

to allow for this, it is useful to work out the appropriately constructed hyper-



2788 Carter

Cauchy tensor (a relativistic generalization of the Cauchy elasticity tensor

of classical mechanics), which is defined by

# m n r s 5 | g | 2 1/2 -
- g m n

(T r s | g |1/2) (21)

or equivalently, in manifestly symmetric form, by

# m n r s 5 # r s m n 5 2| g | 2 1/2 - 2(+ | g |1/2)

- g m n - g r s
(22)

4. BRANE WORLDSHEET GEOMETRY

If the relevant radiation fields B m n and f are considered to be regular

background fields attributable to external souces, the treatment of a brane system

of the kind described in the preceding section will be straightforward, but it is
evident that this will not be the case for the radiation fields produced by the

brane itself, since they will be singular just where their evaluation is needed.

Even for the treatment just of the regular case in which the relevant

radiation fields are of purely external origin, and a fortiori for the treatment

of the more delicate problem of self-interaction, it is desirableÐ before pro-
ceeding to the derivation of the dynamical equations that ensue from the

action (19)Ð to recapitulate the essential geometric concepts (Carter, 1992;

Carter, 1997a) that are needed for the kinematic description of the evolving

worldsheet. The unavailability of this machinery at the time of the pioneering

work (Dabholkar and Harvey, 1989; Copeland et al., 199 0) on the Goto±

Nambu case is one of the reasons for the use of the misleading shortcut
methods responsible for the confusion that beset this subjet before the recent

clarification (Carter and Battye, 1998; Buonanno and Damour, 1998.

Point-particle kinematics can conveniently be developed in terms of the

timelike worldline tangent vector u m that is uniquely fixed by the condition

of being future-directed with unit normalization u m u n 5 2 1, and of the

associated acceleration vector that is given in terms of covariant differentiation
with respect to the (flat or curved) spacetime background metric g m n by a m 5
u n ¹ n u

m . For higher brane cases, and in particular for the strings with which

we shall be concerned here, a less specialized kinematic description must be

used. Instead of the unique tangent vector u m and the derived vector a m that

suffice for the ª zero-braneº case, the kinematic behavior of higher ª branesº

starting with the case of strings (i.e., ª one-branesº ) is most conveniently
describable (Carter, 1992; Carter, 1997a) in terms of its first and second

fundamental tensors. The former is definable as tangential projection tensor

h m
n , say, which is obtained by index lowering from the spacetime background

projection of the inverse of the induced metric as given by the formula
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h m n 5 g ij x m
, i x m

, j (23)

This first fundamental tensor can conveniently be used to rewrite the expres-

sions (2 0) and (21) in the more practical forms

T m n 5 2
- +

- g m n
1 + h m n (24)

and

# m n r s 5
- T r s

- g m n
1

1

2
T r s h m n (25)

The corresponding second fundamental tensor K r
m n 5 K r

n m is obtained

from the first fundamental tensor using the tangentially projected differentia-

tion operator

¹ m 5 h m
n ¹ n (26)

according to the prescription

K m n
r 5 h s

n ¹ m h r
s (27)

The condition of integrability of the worldsheet is the Weingarten identity,

to the effect that this second fundamental tensor should be symmetric on its

first two indices, i.e.,

K [m n ]
r 5 0 (28)

This tensor has the noteworthy property of being worldsheet orthogonal on
its last index, but tangential on its (by the Weingarten identity interchangeable)

first pair of indices,

K m n
s h s

r 5 0 5 ’ l
m K l n

r (29)

using the notation

’ m
n 5 g m

n 2 h m
n (3 0)

for the tensor of projection orthogonal to the worldsheet.

Whereas the full second fundamental tensor is needed for dealing with
gravitational coupling (Battye and Carter, 1995; Carter and Battye, 1998),

the treatment of the simpler cases considered here requires only its trace,

namely the curvature vector

K r 5 K m
m r 5 ¹ n h n r (31)

which must evidently be worldsheet orthogonal, i.e.,



2790 Carter

h r
s K s 5 0 (32)

In terms of the background Riemann Christoffel connection G m
n
r 5

g n s (g s ( m , r ) 2 1/2 g m r , s )) this curvature vector will be expressible in explicit
detail as

K n 5 | g | 2 1/2 (| g |1/2 g ij x n
, i), j 1 g ij x m

, i x r
, j G m

n
r (33)

In the particularly simple case of a Dirac membrane or a Nambu±Goto
string (i.e., one for which the master function + is just a constant) that is

free, in the sense that it is not subjected to any external force, the ª on-shellº

configurations (i.e., the solutions of the variational dynamical equations) will

simply be characterized by the condition that the vector (33) vanishes, K m 5
0, but this simple vanishing curvature condition will not be satisfied for more
general modelsÐ such as those needed for superconduct ing strings (Carter,

1989; Carter and Peter, 1995; Gangui et al., 1998)Ð nor when dilatonic and

axionic forces are involved as in the cases analyzed in the present work.

It is to be remarked that the orthogonality property (32) of the curvature

vector is to contrasted with the tangentiality property of the stress-energy

tensor.

’ l
m T m n 5 0 (34)

and of the hyper-Cauchy tensor.

’ l
m # m n r s 5 0 (35)

Subject to the requirement that the worldsheet-supported field W m n be

constructed from internal worldsheet fields in such a way as to aquire the

corresponding tangentiality property

’ l
m W m n 5 0 (36)

it can be seen that the corresponding distributional conservation law (7) can

be equivalently expressed in terms of tangentially projected differentiation

as the regular worldsheet flux conservation law

¹ m W m n 5 0 (37)

5. THE FORCE DENSITY FORMULA

For the purpose of the deriving the equations of motion of the material

system from the variation principle, the most general variations to be consid-

ered are perturbations of the relevant internal fields, which have not yet been

specified, and infinitesimal displacements with respect to the background
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characterized by the metric g m n and the the linearly coupled axionic and

dilatonic fields.

The effect of displacements can be conveniently analyzed using a
Lagrangian treatment in which not just the internal coordinates s i, but also

the background coordinates x m are considered to be dragged along by the

displacement, so that the relevant field variations are given just by the corres-

ponding Lie derivatives with respect to the displacement vector field j m under

consideration. This leads to the formulas

d B m n 5 j s ¹ s B m n 2 2B s [m ¹ n ]j s (38)

for the axionic field and

d f 5 j s ¹ s f (39)

for the dilatonic field, while finally for the background metric itself one has

the well-known formula

d g m n 5 2 ¹ ( m j n ) (4 0)

The postulate that the internal field equations are satisfied means that

perturbations of the relevant internal fields have no effect on the action

integral (ma, with the implication that for the purpose of evaluating the

variation d (ma there will be no loss of generality taking the variations of

these so-far-unspeci fied internal fields simply to be zero. This means that
the only contribution from the first term in (17) will be the one provided by

the background metric variation, for which we obtain the familiar formula

d (| g |1/2+) 5 1±2 | g |1/2T m n d g m n (41)

The worldsheet flux conservation law (37) is interpretable (Carter, 1992)

as meaning that W m n is related by Hodge-type duality to the exterior deriva-

tives of corresponding worldsheet differential forms (which will generically

be of order p 2 2, respectively). In all the usual applications (including the

continuous medium example mentioned in the preceding section and the

string case developed below) these differential forms will be included among
(or depend only on) the relevant independently variable internal fields whose

variation can be taken to be zero for the purpose of evaluationg d (ma when

the internal field equations are satisfied. This means that the variation of the

bivector surface density will also vanish, i.e., we shall have

d (| g |1/2 W m n ) 5 0 (42)

It follows that the axionic contribution from (18) to the variation of the

integrand in (19) will be given simply by
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d (| g |1/2(1±2 W m n B m n )) 5 | g |1/2(1±2 W m n d B m n ) (43)

The systematic absence of any contribution from the background metric

variation d g m n to action variation terms such as this, not only in the axionic
case considered here, but also in its more widely familiar electromagnetic

analogue, sets a potentially misleading precedent that encourages a dangerous

tendencyÐ one of the main sources of error in earlier work (Dabholkar and

Harvey, 1989; Copeland et al., 1990)Ð to forget to check the possibility of

metric variations in more general contexts. Although it does not contribute
to the axionic term (43), allowance for the background metric variation (4 0)

turns out to be of paramount importance not only in the gravitational case

(Battye and Carter, 1995; Carter and Battye, 1998), but also for the evaluation

of the dilatonic contribution with which we are concerned here. It can be

seen from (25) that we shall have

d (| g |1/2 T) 5 | g |1/2 (T m n 1 # m n ) d g m n (44)

using the notation

# m n 5 # m n r
r (45)

for the trace of the hyper-Cauchy tensor. Thus, despite its deceptively simple

scalar nature, the dilatonic coupling gives rise to a corresponding contribution

that works out to be given by an expression of the not quite so trivially

obvious form

d (| g |1/2T f ) 5 | g |1/2(T d f 1 (T m n 1 # m n ) f d g m n ) (46)

To evaluate the integrated effect of the contributions (41), (43), and

(46), the next step is the routine procedure of substitution of the relevant Lie

derivative formulas (38)±(4 0), followed by absorption of the terms involving

derivatives of the displacement fields into pure worldsheet current diver-

gences. For the primary contribution given by (41) one thereby obtains an
expression of the familiar form

1±2 T m n d g m n 5 2 j m ¹ n T
n

m 1 ¹ m ( j n T m
n ) (47)

while the corresponding expression for axionic coupling contribution (43)

will simply be given by

1±2 W m n d B m n 5 1±2 j m N m n r W
n r 1 ¹ m ( j n B n r W

m r ) (48)

However, the dilatonic coupling contribution (46) is not so simple: in addition

to the obvious scalar field variation contribution given by

T d f 5 j m T ¹ m f (49)

there will be another, less obvious contribution (the one that tended to be

overlooked in earlier work) given by
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(T m n 1 # m n ) f d g m n 5 2 j m ¹ n (2(T n
m 1 # n

m ) f )

1 ¹ m (2 j n (T m
n 1 # m

n ) f ) (5 0)

When these expressions are used to evaluate the variation of the action
integral (19) due to a displacement confined to a bounded region of the

worldsheet, the application of the relevant ( p 1 1)-dimensional version of

Green’ s theorem removes the contributions from the divergence terms, so

that one is left with an expression of the standard form

d (ma 5 # j m (f m 2 ¹ n T
n

m )| g |1/2 d p 1 1 s (51)

Application of the variation principle thus gives the corresponding dynamical

equation in the standard form

¹ n T
m n 5 f m (52)

in which the vector f m represents the total force density exerted by the various

radiation fields involved. Using the foregoing expressions, we can write this

force density immediately in the form

f m 5 f m
J 1 f m

D (53)

in which the axionic contribution can be seen from (47) to be given by the
well-known formula (the axionic analogue of the Lorentz force formula in

electromagnetism)

f m
J 5 1±2 N m

n r W
n r (54)

which seemed unfamiliar (Vachaspati and Vilenkin, 1987) when first derived

in the present context, but which is in fact interpretable just as the immediate

relativistic generalization of the historic formula on which the theory of flying

is based, namely the Joukowski force law for the lift (due to the Magnus

effect) on a long, thin (i.e., stringlike) aeroplane wing. What is not so well
known is the corresponding formula for the dilatonic force density, which

can be seen from (49) and (5 0) to be given by

f m
D 5 T ¹ m f 2 ¹ n (2(T m n 1 # m n ) f ) (55)

5.1. The Force on a Nambu ± Goto String

The preceding formulas apply to domain wall-type membrane models
(with p 5 2) as well as to simple point-particle models (with p 5 0), but

from this stage onward we shall restrict our attention to the case of string

models, as characterized by p 5 1. Before further restricting attention to the

very special case of Nambu±Goto-type string models, it is worthwhile to
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recapitulate some relevant features that are shared by more general string

models, including the kind needed (Carter, 1989; Carter and Peter, 1994;

Gangui, et al., 1998) for describing the effects of the type of supercontivity
whose likely occurrence in cosmic strings was originally predicted by Wit-

ten (1985).

In the higher dimensional branes the vorticity flux W m n might depend

on internal field variables of the model, while for a point-particle model no

such source can exist at all. In the intermediate case of a string there is no

obstruction to the existence of a vorticity flux, but it cannot depend on any
internal field variables of the model: the only way the conservation law (37)

can be satisfied on a two-dimensional worldsheet is for the vorticity flux to

have the form

W m n 5 k Å %m n (56)

where % m n is the antisymmetric unit surface element tensor and k is a constant
that is interpretable as representing the momentum circulation around the

string of the Zel’ dovich-type fluid representing the axion fieldÐ which means

that it will be an integral multiple of Planck’ s constant, i.e., an integral

multiple of 2 p in the unit system we are using with " set to unity. Using the

traditional dot and dash notation xÇ m 5 x m
, 0 and x8 m 5 x m

,1 for the effect of
partial differentiation with respect to worldsheet coordinates s 0 and s 1, the

antisymmetric unit surface element tensor is given by

% m n 5 2(| g |) 2 1/2xÇ [m x8 n ] (57)

In the case of a string, the fundamental tensor will be given in terms

of this unit tangent bivector by

h m
n 5 %m

r % r
n (58)

One of the reasons why the kind of tensorial analysis used here was not

developed much earlier for the purpose of application to string dynamics is

that the heavy algebra involved in the use of coordinate-dependent expressions

such as that on the right-hand side of the curvature formula (33) could be

alleviated to some extent by the use of specialized internal coordinate systems
of the conformal type characterized by the conditions

xÇ m x8m 5 0, xÇ m xÇ m 1 x8 m x8m 5 0 (59)

which imply the relation

| g |1/2 5 x8 m x8m 5 2 xÇ m xÇ m (6 0)

If one is willing to accept the loss of flexibility entailed in restricting s 0 and

s 1 to satisfy these conditions (which are frequently incompatible with other



Axion ± Dilaton Action Cancellation in Strings 2795

compelling desiderata), then the unwieldy formula (33) for the curvature

vector that plays such an important role will be replaceable by the handier

expression

K n 5 | g | 2 1/2(x9 n 2 xÈ n 1 (x8 m x8 r 2 xÇ m xÇ r ) G m
n
r ) (61)

If the background metric g m n is not just empty, but actually flat, then this

formula will be further simplifiable by elimination of the final term if one

is willing to restrict the background cordinates to be of Minkowski type, but
of couse such a restriction may not be what is most convenient for exploiting

symmetries, such as occur in circular string loop configurations for which

spherical or cylindrical coordinates might be preferable. The development

of string dynamics has been unnecessarily delayed by overreliance on the

special gauge characterized by Minkowski coordinates on the background

and conformal coordinates on the worldsheet, rather that using the kind of
geometrical approach followed here, which provides more elegant and concise

formulas for general purposes. This more powerful geometric approach is of

course particularly advantageous for applications in which for various techni-

cal reasons the usual (conformal cum Minkowski) kind of gauge may be

unsuitable.

From this point on, attention will be restricted to the especially simple
case of string models of Nambu±Goto type, which includes the case that

arises in the low-energy limit of string theory considered by Dabholkar and

Harvey (1989). Such models are characterized by the condition that the

relevant master function + is simply a constant, which means that it will be

expressible in the form

+ 5 2 m2
K (62)

where mK is a fixed mass scale that will be referred to as the Kibble mass

to distinguish it from other mass scales in the theory. In the context of cosmic

string theory it is generally expected that it should be of the same order of

magnitude as the Higgs mass, mX say, that is associated with the underlying
ª spontaneously brokenº symmetry of the vacuum. In the context of superstring

theory the quantity mK is usually supposed to be of the order of magnitude

of the Planck mass mP.

The other parameters needed to complete the specification of the theory

are the quantities mJ, mD, and k that have already been introduced. To match

the present formulation to the equivalent low-energy linearized limit theory
in the slightly different notation used by Buonanno and Damour (1989), their

parameters a , l , and m are identifiable as being given by the relations a 5
mP/mD, l 5 k mP mJ/2, and m 5 m2

K. The special values corresponding to the

low-energy superstring theory limit considered by Dabholkar and Harvey
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(1989) are given by a 5 1 and l 5 m , which in the formulation used here

is equivalent to the conditions

mD 5 mP, 2m2
K 5 k Å mJmP (63)

Whether or not the particular conditions (63) are satisfied [and of course

quite independently of whether the internal coordinate gauge satisfies the
conditions (59) on which the specialized formulas (6 0) and (61) depend ], the

surface stress-momentum-energy tensor of the string can be seen from (23)

to be proportional to the fundamental tensor, according to the formula

T m n 5 2 m2
K h m n (64)

and so its trace is given by

T 5 2 2m2
K (65)

The corresponding the hyper-Cauchy tensor is obtainable (Battye and Carter,

1995) from (25) in the form

# m n r s 5 m2
K( h m ( r h s ) n 2 1±2 h m n h r s ) (66)

It can be seen from this that in this special Nambu±Goto case the trace tensor

that appears in the dilatonic force formula (54) will vanish, i.e., one obtains

# m n 5 0 (67)

It is to be emphasized that that this simplification is a special feature of the

string case. and that it does not hold in the higher dimensional case of a

Dirac membrane, nor even in the trivial lower dimensional case of a point

particle with mass m and unit 4-velocity vector u m , for which one obtains

# m n 5 2 mu m u n /2.
It follows from (54) and (56) that the Joukowsky force density exerted

by the axionic fluid on a string (of any kind) is given by

f m
J 5 1±2 k Å N m

n r %
n r (68)

It follows from (55) using (64) and (67) that in the case of a Nambu±Goto

string the corresponding dilatonic force density contribution will be obtain-

ableÐ with the aid of the defining formula (31) for the curvature vector

K m Ð in the form

f m
D 5 2m2

K( f K m 2 ’ m n ¹ n f ) (69)

Simple though it is, this formula does not seem to have been previously

made available in the literature.

It is to be observed thatÐ as needed to avoid overdetermination in the

Goto±Nambu caseÐ the force contributions (68) and (69) are both identically
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orthogonal to the string worldsheet. It is evident that if the dilatonic field

were due only to high-frequency radiation from an external source, then the

first term on the right in (69) would be relatively negligible, but it will be
shown below that this term is not at all negligible for a dilatonic field due

to self-interaction.

6. ALLOWANCE FOR REGULARIZED SELF-INTERACTION

In cases where self-interaction is involved, it is commonly convenient

to decompose the relevant linear interaction fieldsÐ which in the present

instance are B m n and f Ð into a short-range contribution determined via the
relevant Green function by the immediately neighboring source distribution,

and a longer range residual contribution that includes allowance for incoming

radiation from external sources. More particularly, in the present instance, it

will be useful to consider the relevant fields B m n and f the sums of short-

range contributions that will be indicated by a caret and long-range parts that

will be indicated by a tilde in the form

B m n 5 BÄ m n 1 BÃm n , f 5 f Ä 1 f Ã (7 0)

This will evidently give rise to corresponding decompositions

f m
J 5 fÄ m

J 1 fÃmJ , f m
D 5 fÄ m

D 1 fÃmD (71)

for the associated force densities as specified by the general formulas (53),

(54) or their Nambu±Goto string specializations (68), (69).

In many contexts the coupling is so weak that the local self-force
contributions fÃmJ and fÃmD can be neglected. However, in cases for which one

needs to take account of the self-induced contributions BÃm n and f Ã, there will

be difficulties arising from the fact that the relevant source fields on the

right-hand sides of the field equations (11) and (12) will not be the regular

worldsheet-supported tensor fields W m n and T, but the corresponding four-

dimensionally supported distributions WÃm n and TÃas constructed according
to the prescriptions (14) and (15). For sources such as these, the resulting

field contributions will diverge in the thin-worldsheet limit.

As in the familiar point-particle case, so also for a string, one can obtain

an appropriately regularized result by supposing that (as will be entirely

realistic in cases such as that of a cosmic string model for a vortex defect

of the vacuum) the underlying physical system one wishes to describe is not
quite infinitely thin, but actually has finite spatial extent that can be used to

specify an appropriately microscopic ª ultravioletº cutoff length scale, d * say.

This will be sufficient for regularization in the point-particle case, but in the

string case it will also be necessary to introduce a long-range ª infraredº
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cutoff length scale, D say, that might represent the macroscopic mean distance

between neighboring strings. In the case of a string an an ordinary four-

dimensional spacetime background, it can be seen [following the example
(Carter, 1997b) of the electromagnetic prototype considered by Witten (1985)

in his original discussion of ª superconductingº cosmic strings ] that the domi-

nant contribution to relevant Green function integrals in the ultraviolet limit

will then be proportional to a logarithmic regularization factor of the form

lÃ5 ln{ D 2/ d 2
*} (72)

More specifically, the dominant contribution to the axionic self-field arising

from the D’ Alembertian source equation (11) will be given by

BÃm n 5 lÃm2
JW m n (73)

with W m n given by (56), while similarly the dominant contribution to the

dilatonic self-field arising from the d’ Alembertian source equation (12) will

be given by

f Ã5 lÃm 2 2
D T (74)

(If the microscopic axial current source distribution were very different from
that of the stress-energy trace source for the dilatonic field, the natural cutoff

d * that would be most appropriate for the latter might differ somewhat from

what would apply to the former, but the effect of such a difference could be

considered as a higher order correction that need not be taken into account

so long as we are only concerned with the dominant contribution.)

For the purposes of substitution in the force formulasÐ (54), (55) or
their Nambu±Goto string specializations (68), (69)Ð knowledge just of the

regularized self-fields BÃm n and f Ãis not immediately sufficient. The problem

is that these regularized values are well defined only on the worldsheet,

which means that they do not directly provide what is needed for a direct

evaluation of the gradients that are required: there is no difficulty for the

terms involving just the tangentially projected gradient operator ¹ n , but it
can be seen that there are also contributions from the unprojected gradient

operator ¹ n which is directly meaningful only when acting on fields whose

support extends off the worldsheet.

It fortunately turns out that this problem has a very simple general

solution, of which particular applications in particular gauges are implicit in

much previous work (Dabholkar and Quashnock 199 0a, 199 0b; Quashnock
and Spergel, 199 0; Copeland et al., 199 0; Kakushadze, 1993; Battye and

Shellard, 1995, 1996) and which I formulated explicitly in conveniently

covariant and more generally utilizable form in the specific context of the

electromagnetic case (Carter, 1997). What one findsÐ by examining the string
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worldsheet limit behavior of derivatives of the relevant d’ Alembertian Green

functionÐ is that the appropriate regularization of the gradients on the string

worldsheet is obtainable simply by replacing the ill-defined operator ¹ n by
the corresponding regularized gradient operator

¹ Ãn 5 ¹ n 1 1±2 K n (75)

where K m is the worldsheet curvature vector that is defined by the formula

(31) and that is expressible, if one is willing to allow oneself to be restricted

to the use of conformal worldsheet coordinates, by a more detailed prescription
of the form (61). In the explicit application of the formula (75), it is sufficient,

in the case of a scalar field w , to use the simple expression ¹ m w 5 g ijx m
,i w ,j

for the tangentially projected gradient, but for a tensorial field there will

also be contributions depending on the background Riemann Christoffel

connection G m
n
r , which is also involved in the detailed expressions (33) and

(61), unless one is using Minkowski coordinates in a flat spacetime
background.

Applying this procedure to the axionic Kalb±Ramond 2-form, one sees

from (6) and (73) that the corresponding regularized local current 3-form

contribution is given by

JÃm n r 5 3 ¹ Ã[m BÃn r ] 5 1±2 lÃ(6 ¹ [m W n r ] 1 3 K [m W n r ]) (76)

Taking account of the surface flux conservation law (37), and using the

defining relation (31) for the curvature vector K m , it can be seen that the

axionic force density (54) will be expressible as a worldsheet divergence in

the form

fÃmJ 5 2 ¹ n TÃ
m n
J (77)

in terms of a regularized local axionic stress-energy tensor given by

TÃm n
J 5 BÃm

r W n r 2 1±4 BÃr s W r s h m n (78)

which can be seen from (56) and (73) to reduce with the aid of (58) to the

simple explicit form

TÃm n 5 2 1±2 lÃk Å 2m2
J h m n (79)

which is evidently isotropic with respect to the two-dimensional worldsheet

geometry, like the intrinsic stress-energy tensor in the Nambu±Goto case.

When one applies the same procedure to the dilatonic self-force contribu-

tion in (54) one finds that it, too, can be formulated as a worldsheet divergence
in the analogous form

fÃmD 5 2 ¹ n TÃ
m n
D (8 0)

in terms of a regularized local dilatonic stress-energy tensor given by
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TÃm n
D 5 f Ã(T m n 2 1±4 T h m n 1 # m n ) (81)

More specifically, in the particular case of a Nambu±Goto-type string, as

characterized by (64) and (67), it can be seen that the dominant self-force
contribution obtained from (69) is given by

fÃmD 5 m2
K f ÃK m (82)

[which is the exact opposite of what would be obtained if the first term on

the right-hand side of (69) were omitted] and that the corresponding dilatonic

stress-energy contribution reduce to the form

TÃm n
D 5 2lÃm4

Km 2 2
D h m n (83)

Comparing (83) with (79), it can be seen that [in contradiction with

previous assertions to the effect that it would vanish (Copeland et al., 199 0)

or even that it would augment the corresponding axionic contribution (Dab-

holkar and Harvey, 1989) ], this dilatonic contribution must always be oppo-

sitely directed to the corresponding axionic contribution. More particularly,
it can be seen that these dominant local axionic and dilatonic self-interaction

contributions will exactly cancel each other out if the relevant coupling

constants are related by the condition

2m2
K 5 k Å mDmJ (84)

which will in fact be satisfied automatically in the special case (63) envisaged

by Dabholkar and Harvey (1989) [whose faulty analysis gave a condition

that was somewhat different from (84)Ð but that also happened to be satisfied

in the special case (63) they were considering, and that thereby provided a
spurious verification of their reasoning ].

The mutual cancellation subject to (84) of the dominant axionic and

dilatonic self-interactions for a Nambu±Goto string in a four-dimensional

background has already been confirmed by Buonanno and Damour (1998)

using an entirely different approach formulated in terms of an effective action.

The fact thatÐ as in the previously investigated electromagnetic (Carter,
1997b) and gravitational (Carter and Battye, 1998; Carter 1999) casesÐ the

result of the present approach based on direct evaluation of the self-force is

in full agreement with the result of the approach based on the use of an

effective action provides a check on the validity of the latter approach,

whose credibility had previously been questioned (Copeland et al., 199 0).
The complete consistency between the two kinds of approach has already

been made clear for the electromagnetic (Carter, 1997) and gravitational

(Carter, 1999) cases, and will be made clear for the axionic and dilatonic

cases dilatonic in the next section, where the relevant effective action contribu-

tions will be explicitly derived.
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7. ACTION RENORMALIZATION AND CONCLUSIONS

The fact that the dominant local force contributions are expressible as
divergences of the form (79) and (80) is what makes it possible to describe

the the result of this regularization as a ª renormalizationº : it implies that

these self-force contributions can be absorbed into the left-hand side of the

basic force balance equation by a renormalization whereby the original ª bareº

stress-momentum-energy density tensor T m n undergoes a replacement T m n j

TÄ m n in which the ª dressedº stress-momentum-energy tensor is given by

TÄ m n 5 T m n 1 TÃm n (85)

with

TÃm n 5 TÃm n
J 1 TÃm n

D (86)

The basic force balance equation (51) can thereby be rewritten in the equiva-

lent form

¹ n TÄ
m n 5 fÄ m (87)

in which the force density on the right consists just of well-behaved long-
range radiation contributions as given by the sum

fÄ m 5 fÄ mJ 1 fÄ mD (88)

in which each of the terms is entirely regular.
What will be shown in this final section is that the renormalized stress-

energy tensor TÄ m n is derivable, by a prescription of the standard form (2 0),

from a corresponding ly renormalized action in which the original Lagrangian

master function +ma is replaced by an appropriately renormalized master

function +Ä ma.

In order to incorporate the effects of self-interaction, as described by
the renormalized force balance equation (87), it can be verified that all one

needs to do is to replace (ma by a corresponding renormalized action

(Ä ma 5 # +Ä ma| g |1/2 d 2 s (89)

with

+Ä ma 5 +Ä 1 1±2 BÄ m n W
m n 1 f Ä T (9 0)

where the renormalized master function is given simply by

+Ä 5 + 1 L ÃJ 1 L ÃD (91)

in which the axionic self-coupling contribution is given by
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L ÃJ 5 1±4 BÃm n W
m n (92)

which works out simply to be a constant,

L ÃJ 5 2 1±2 lÃk Å 2m2
J (93)

in which it is to be recalled that lÃis the logarithmic factor given by (72).

The corresponding dilatonic self-coupling contribution (which has not been
evaluated for a general string model before) is obtained as

L ÃD 5 1±2 f ÃT 5 1±2 lÃm 2 2
D T 2 (94)

It is to be observed that in terms of the string energy density 8 and
tension 7 (as conventionally defined to be the eigenvalues of 2 T m n ) the

trace in the preceding formula is given by T 5 2 (8 1 7), so the dilatonic

self-interaction contribution is proportional to the (8 1 7)2. This is to be

contrasted with the case of the corresponding gravitational self-interaction

contribution, which has been shown (Carter, 1999) to be proportional to (8
2 7)2. For a Nambu±Goto string, as characterized by 8 5 7 5 m2

K, this
gravitational contribution will simply vanish, while the dilatonic contribution

(94) will just have the constant value given by

L ÃD 5 2lÃm4
Km 2 2

D (95)

The self-interaction contributions (93) and (95) are in perfect agreement

with those already obtained by the effective action approach developed by

Buonanno and Damour (1998), whose results were more general than those

provided here insofar as they were not limited to a four-dimensional back-

ground, though on the other hand they were more restricted insofar as they
considered only strings of Nambu±Goto type.

This completes the demonstration that, as shown for electromagnetic

(Carter, 1997b) and gravitational (Carter, 1999) interactions, and contrary to

what was previously alleged (Copeland et al., 199 0), so also for the axionic

and dilatonic contributions, the treatment of the divergent self-interaction

contribution by an approach developed directly in terms of effective action
is entirely consistent with the treatment based on the detailed analysis of the

corresponding force contributions, as given in the axionic case by (68) and

in the dilatonic case by the general formula (55) or its Nambu±Goto special-

ization (69).

The discrepancies that arose in earlier work were due to the use of
unreliable short-cut methods [largely motivated by the unavailability of the

more efficient methods of geometrical analysis (Carter, 1997a) that have

since been developed ], which lead to the omission of some of the (less easily

calculable) terms in the relevant formulas. In particular, the sign error in the

original estimate of the net dilatonic contribution by Dabholkar and Harvey



Axion ± Dilaton Action Cancellation in Strings 2803

(1989) can be accounted for as being due to omission of the contribution

provided by the first term on the right in (69). As was seen for the correspond-

ing forces in the previous section, the axionic contribution (93) will evidently
be exactly canceled by the dilatonic contribution (94) when the special condi-

tion (84) is satisfied. Like the self-cancellation of the gravitational contribution

in the Nambu±Goto case (Carter and Battye, 1998; Carter, 1999), this mutual

cancellation of the corresponding axionic and dilatonic contributions is a

special feature of four-dimensional space-time: it has been shown by the

work of Buonanno and Damour (1998) that it does not carry over to Nambu±
Goto strings in backgrounds of higher dimension.
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